Cwf16p Associating with the Nineteen Complex Ensures Ordered Exon Joining in Constitutive Pre-mRNA Splicing in Fission Yeast
نویسندگان
چکیده
Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3' splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4+ gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3' splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining.
منابع مشابه
Structural characterization of the fission yeast U5.U2/U6 spliceosome complex.
The spliceosome is a dynamic macromolecular machine that catalyzes the excision of introns from pre-mRNA. The megadalton-sized spliceosome is composed of four small nuclear RNPs and additional pre-mRNA splicing factors. The formation of an active spliceosome involves a series of regulated steps that requires the assembly and disassembly of large multiprotein/RNA complexes. The dynamic nature of...
متن کاملA simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex.
Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we devel...
متن کاملInteractions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation.
The unexpected low number of genes in the human genome has triggered increasing attention to alternative pre-mRNA splicing, and serine/arginine-rich (SR) proteins have been correlated with the complex alternative splicing that is a characteristic of metazoans. SR proteins interact with RNA and splicing protein factors, and they also undergo reversible phosphorylation, thereby regulating constit...
متن کاملIdentification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors.
The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature ...
متن کاملRED CELLS Alternative splicing of protein 4.1R exon 16: ordered excision of flanking introns ensures proper splice site choice
Alternative splicing plays a major role in regulating tissue-specific expression of cytoskeletal protein 4.1R isoforms. In particular, expression of the protein’s functionally critical spectrin-actin binding domain, essential for maintenance of red cell membrane mechanical properties, is governed by a developmentally regulated splicing switch involving alternative exon 16. Using a model 3-exon ...
متن کامل